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It was during a 1956 conference that scientists from the RAND
Corporation in Santa Monica, California, unveiled what has come
to be known as the first artificial intelligence (AI) program. Called
the Logic TheoryMachine,1 it could prove complexmath theorems
by mimicking the problem-solving skills of a human being. This
“thinking machine,” as its creators described it, reportedly met
with an indifferent response, but that’s hardly the case with AI
now: AI software is embedded in many of the digital devices we
live with and use every day, and global spending on the technology
neared $36 billion in 2019—an increase of 44% over the previous
year.2

What is AI? It is not easy to say; the term lacks a consensus
definition. “We have trouble analyzing and measuring human
intelligence because it is something we experience in our heads,”
says Sam Adams, a senior AI researcher at RTI International in
Research Triangle Park, North Carolina. “So how do we know
when we have an artificial version of it?”

Jason Moore, a professor of informatics at the University of
Pennsylvania’s Perelman School of Medicine in Philadelphia,
describes AI as the science of building software and computers that
solve problems and reason like humans do. As an example, he cites
self-driving cars, which have to discern who else is on the road,
read street signs, and make instantaneous decisions on how to ma-
neuver without crashing. AI technology can also enhance human
intelligence, as it does when it enables scientists to identify impor-
tant connections in vast data sets that they cannot detect on their
own. Moore says scientists have proposed a newer term, “aug-
mented intelligence,” to describe that capability.

NowAI is becoming a powerful research tool in environmental
health.3,4 “I see it as a catalyst for innovation within the environ-
mental health sciences that can help us address many unsolved
challenges around how best to utilize large and complex data sets,”
says Rick Woychik, acting director of the National Institute of
Environmental Health Sciences (NIEHS). “Ideally, AI can help us
propose new hypotheses or come up with effective solutions for
difficult problems.”

Environmental health scientists are already using AI to search
the literature for useful information, model the effects of pollutants
in cells and tissues,5 and assess air quality on the basis of remote
sensing data.6,7 According to Nicole Kleinstreuer, acting director
of the National Toxicology Program (NTP) Interagency Center for
the Evaluation of Alternative Toxicological Methods, AI could
eventually play a critical role in transcriptomic studies of cells’
protein-making machinery and assessments of the “exposome,” or
totality of an individual’s chemical exposures over a lifetime.

Still, experts point out that AI can also generate misleading
results when used incorrectly. AI algorithms can be difficult to
train, and many of them are “black boxes”—meaning their internal
calculations are either proprietary information or too complex for
people to understand.8 Scientists may justifiably wonder if a black
box will behave as expected when it processes real-world data or if
it will pick up on confounding signals that compromise its
predictions.

IvanRusyn, a professor of toxicology at TexasA&MUniversity,
cautions that some scientists may oversell the technology and mis-
lead the general public by suggesting that AI-enabled solutions to

difficult problems in medicine and environmental health are “just
around the corner andwithin reach.”

Moore agrees, adding that when it comes to AI in environ-
mental health, slow and steady is the way to go. “We want to be
enthusiastic while tempering expectations as scientists identify
the right approach to each problem,” he says.

A Machine-Learning Tutorial
The driving force behind AI is machine learning, which refers to
how computer algorithms improve at performing assigned tasks
with increasing experience.9 One way they do that is by learning to
recognize patterns in data. Training in pattern recognition can be
either supervised (coached by humans) or unsupervised, meaning
the algorithms are turned loose on data to identify patterns on their
own.

Supervised algorithms must first be trained with labeled data
sets that show them how to recognize, for instance, a cat in a digital
photo, a gene in a DNA sequence, or the likely price of a home in a
given neighborhood. Depending on the underlying nature of the
data, the algorithms’ predictions arrive in one of two categories:
either a discrete classification (such as “cat” or “gene”) or a regres-
sion category in which the prediction describes a measured value
within a continuous variable (such as “price”).

Unsupervised algorithms self-organize data without any such
guidance. With a common technique called cluster analysis, for
instance, these algorithms automatically sort data with similar
features into groups. Because scientists might not know to look
for those data groupings in advance, cluster analysis can lead to
new and unanticipated discoveries.

An even more powerful subclass of machine learning, called
deep learning, relies on layers of algorithms that are arranged to
mimic the architecture of the human brain.10 Convolutional neural
networks (CNNs), for instance, are deep-learning models inspired
by the arrangement and functioning of the human visual system.
CNNs are at the core of most computer vision applications today—
such as Facebook’s automated photo-tagging system or the inter-
pretation of remote sensing data.

But there are many other types of deep-learning models. A
recurrent neural network is a model that’s particularly good at find-
ing patterns in time-series data, meaning data sets that change over
time (think stock market prices or fluctuations in ozone concentra-
tions during the day). Yet another kind of deep-learning model,
called an autoencoder, is used for unsupervised machine learning
and can be applied to reconstruct complete digital images and other
data representations fromminimal sets of key information. In some
cases, they are used to filter out extraneous “noise,”which is useful
for sharpening digital images.

Selecting the right model for the job is crucially important,
though it is not always obvious which one to pick. “One of themost
common questions I get is, ‘What sort of model should I use with
my data?’ ” says Marianthi-Anna Kioumourtzoglou, an assistant
professor at Columbia University’s Mailman School of Public
Health who uses AI in health studies of chemical mixtures. The an-
swer, she says, is that researchers should start by clearly framing
the question theywant to answer.
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This figure shows three data sets (rows) with two variables (x- and y-axes) and two outcomes (blue or red). Each of the 10 machine-learning methods (columns)
attempts to classify dots as blue or red by building mathematical functions of the x and y variables. The shades of color reflect the confidence of the model in
classifying each dot as blue or red. The numbers represent the classification accuracy or the proportion of dots correctly assigned a blue or red outcome by the
model. Each method detects different patterns and performs differently on each data set. One of the challenges of machine learning is knowing which method
is the best choice for a specific data set. Image: 3-Clause BSD License. Figure created using the Scikit-learn library.18
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David Carlson, an assistant professor of civil and environ-
mental engineering at Duke University, says the risk to avoid is
“overfitting,” or the tendency of a poorly chosen model to capture
noise in the data instead of real information. In these cases, the
model will generate unreliable predictions, whereas well-chosen
models, he explains, will be generalizable. In other words, a
well-chosen model will be capable of adapting properly to new
data that it has never seen before. Scientists can apply several sta-
tistical tests to validate their models so they can be more confi-
dent in the models’ generalizability.

Although model selection involves specialized skills in statis-
tics and computer science, some researchers are also turning to a
growing number of open-source software packages that will fit
models to their data automatically. At a 2019 conference devoted
to AI for environmental health,11 UPenn’s Moore described one
such package called PennAI, which was developed by his own
research team. “You just load your data set, push a button, and
the AI takes over and launches what it thinks is the best model to
run,” he said. According to Moore, PennAI is able to do this
because it creates a knowledge base of which models tend to
work with different kinds of data, similar to the systems that com-
mercial entities such as Amazon use to suggest items you might
want to buy based on your shopping history.

In other words, Carlson explains, PennAI andmany other pack-
ages are intended to makeAI toolsmore accessible to a broad audi-
ence. But, he adds, while such tools aremore accessible than ever,
“I personally do not think that such systems are there yet, and you
need a lot of expertise and understanding to use and correctly inter-
pret the output of such a system.”

The Artificial Intelligence Landscape in
Environmental Health Today
As AI moves into environmental health research, near-term
opportunities for the technology are arising on several fronts.
Text analytics (also known as text mining) uses machine-learning
algorithms to extract useful information from papers and reports.
This “is a big area of interest for us,” says Jerry Blancato, director
of the Office of Science and Information Management at the U.S.
Environmental Protection Agency (EPA). Blancato says text ana-
lytics will ideally allow for better ways to manage, query, and
categorize data from different sources.

According to Paul Whaley, a research fellow at Lancaster
University in the United Kingdom and the Evidence-Based
ToxicologyCollaboration in the United States, advances in text ana-
lyticswill go a long way toward boosting the efficiency of system-
atic review, a highly methodical process by which scientists
collect evidence from multiple sources that can help answer cer-
tain questions. As it stands now, systematic reviews rely heavily
on research associates who have to read through hundreds or
even thousands of documents. Whaley says the EPA and the
NIEHS have both begun to automate these initial screenings with
machine-learning algorithms that classify the documents accord-
ing to keywords in titles or abstracts.

More complex text analytics may eventually allow algorithms
to read and comprehend entire sentences, although these pro-
grams do not yet have the necessary rich, granular understanding
of language. “That’s the sort of capability we’re really looking
for,” Whaley says. “Classifications are helpful, but more than
that, we need machine-learning systems that can read through the
reports and extract relevant information for us. That way, instead
of manually extracting data from, say, twenty-five reports, you
could automatically pull it from thousands of potentially useful
documents and wind up with much larger, richer data sets than
can be assembled manually.”

Whaley adds that an important step in that direction would be
to assemble a “full-text corpus” of annotated studies that could
be used to train algorithms to read technical language more effec-
tively. A full-text corpus is a set of documents within which the
important information has been highlighted or tagged by hand.
According to Whaley, algorithms trained on such a knowledge
base will learn to identify and extract similar information when
they are exposed to it to in other documents later.

At the NTP, researchers are using analogous methods with an
eye toward developing computerized systems for predicting chemi-
cal toxicity. Toward that end, Kleinstreuer’s group and researchers
at Oak Ridge National Laboratory are jointly developing algorithms
that, as afirst step,will identify high-quality papers in the toxicology
literature. During this initial process, reviewers have to read the
studies and then extract information on, for instance, the protocols,
types of chemicals tested, and observed effects. The aim is to use the
information in those papers as source material for databases that
relate chemical structures to toxic end points such as mortality, en-
docrine disruption, and protein reactivity, among others. In turn,
these databases can be used to train machine-learning models used
by other teams investigating chemical safety.

Assembling the databases requires that NTP researchers put the
published information intomachine-readable formats that computer
algorithms can work with. “A lot of what we’re doing now is brute
force curation to digitize studies that are not computationally acces-
sible,” Kleinstreuer says. She adds that NTP researchers recently
curated a database of rodent LD50 values (which describe the dose
that kills 50% of a group of exposed animals) associated with
approximately 15,000 chemical structures. Kleinstreuer says that as
model development evolves, the entire process—from selecting
papers, to curating databases, to finally developing algorithms that

The open-source PennAI software aims to simplify machine learning for the
user. On the launch screen (top), users choose from available data sets to per-
form analyses. The “Best Results” box shows which algorithm has performed
most accurately on each data set. The user can also browse all the results for
each data set by clicking on the “experiments completed” box. From here, the
user has the option of toggling to the “AI” option to let the software automati-
cally choose an appropriate machine-learning algorithm and parameters. Or, on
the “Build New Experiment” screen (bottom), the user can manually select
algorithms and parameter settings. Image: Courtesy JasonMoore.
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predict toxic effects from exposure to untested chemicals—could in
time be accomplishedwithAI.

Applying machine learning to field- and satellite-based remote
sensing data is yet another emerging development. At the EPA, sci-
entists are using the technology to map floodplains and mosquito
habitats and to develop predictive models that warn of toxic algal
blooms. Elsewhere, other researchers are using it to estimate air
pollution levels. One of these scientists is Scott Weichenthal, an
epidemiologist at McGill University. During a recent project,
Weichenthal’s team found that when applied to satellite imagery,
CNNs predicted concentrations of fine particulate matter (PM2:5)
with nearly the same accuracy as a model used by the World
Health Organization (WHO) to assess air quality for its Global
Burden of Disease study.12

The WHO’s model, which is called the Data Integration Model
for Air Quality, relies on many different inputs, such as chemical
transport features and pollution measurements gathered from sen-
sors on the ground. Weichenthal and his colleagues trained their
model by pairing ground-level sensor data from approximately
6,000 sites in 98 countries with corresponding satellite data for each
sensor location. Once trained, the model could predict variation in
PM2:5 levels solely based on land-based features, “and all you need
to run it is the satellite picture,”Weichenthal says.

Building on this approach, Francesca Dominici, a biostatisti-
cian and codirector of the Data Science Initiative at Harvard
University, has related machine learning–derived estimates of air-
borne PM2:5 concentrations to changes in mortality among older
Americans.13 For that effort, she and her colleagues relied on a
model14 that combined ground- and satellite-based measures and
applied machine-learning algorithms to the data to estimate pollu-
tion levels at the square-kilometer level throughout the United
States. They paired the predicted values with data from millions
of Medicare claims, gathered from each zone between 2000 and
2012. Their analysis indicated that increases of 10 lg=m3 in
PM2:5 and 10 ppb in ozone were associated with increases in all-
cause mortality of 7.3% and 1.1%, respectively.13

Issues of Trust
Still, Dominici describes the modeled PM2:5 predictions as guesses,
adding, “We’re not there yet in terms of quantifying how good the
guesses from machine learning are.” That is especially true when
the predictions come from black boxes that, as she says, breed
uncertainties “thatwe cannot afford to ignorewhenwe’re estimating
health effects.”

Weichenthal agrees that the technology isn’t without its short-
comings. He acknowledges that the estimates in his work became
increasingly unreliable outside the areas where the model was ini-
tially trained. Moreover, given that the model’s internal calcula-
tions are somewhat opaque, the specific features of the built
environment that drive its predictions are not known.

In an especially egregious circumstance of poor guesswork that
came to light during the 2018 California wildfires, Google used a
proprietary black-box machine-learning algorithm from another
company to power its search page weather widget. The widget
claimed air pollution levels were safe,15 even as people in the area
were watching the ash build up on their cars.8 According to
Carlson, computer scientists are currently experimenting with
ways to open up deep neural networks and other black boxes to ex-
pose their internal calculations or to produce interpretable models
with comparable accuracy.

Meanwhile, any model’s accuracy depends, in large part, on
the quantity and quality of the data to which it is exposed and dif-
ferences between training data and real-world data. Carlson wrote
in 2019 that these accuracy-altering differences “can cause signif-
icant problems for machine-learning methods.”8 Carlson claimed

that “modifying a single pixel can completely alter an algorithm’s
understanding of an image” and a small decal stuck to a stop sign
“can fool even a modern industrial computer vision system for
self-driving vehicles.”8

Making sure that machine-learning algorithms used in environ-
mental health have sufficient access to high-quality data is now a
priority for the field. “Nothing in AI is going to work if you do not
pay attention to data quality,” says Woychik, adding that the
NIEHS is highly focused on developing sustainable systems for
generating data that can be easily shared with researchers around
theworld. Fundamental to that goal, he says, is that data production
abides by the FAIR Guiding Principles, which were first published
in 2016.16 Those principles state that data, and associated data
objects such as code, should be findable, accessible, interoperable,
and reusable by humans andmachines alike.

Toward that end, the NIEHS is currently overhauling its cyber-
infrastructure to better prepare for AI uses. The institute has hired
new staff tasked with assembling a plan for cyberinfrastructure
management, including better ways to collect, annotate, and
archive data for ongoing and future use.17 Once those systems are
in place, “we can think about ways to do more complex experi-
ments with AI,”Woychik says, “but without overpromising on the
potential when somuch is still speculation.”

Similarly, officials at the EPA recently established a formal
steering committee that’s become a gathering point for people
interested in AI who want to provide training, advice, or consul-
tation. “We have many people with deep expertise, and we’re

Investigators including Frederica Dominici developed a machine-learning
model to predict PM2:5 concentrations across the United States. The model
incorporates remotely sensed data, estimates of ground-level PM2:5 and total
atmospheric aerosols, meteorological data, land use data, and more. The
training set (top) was based on monitoring data from the U.S. Environmental
Protection Agency’s Air Quality System. The model produced an image
(bottom) that closely mirrors the ground-truthed data but offers a finer spatial
scale. Image: Courtesy Benjamin M. Sabath.
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looking to share the wealth and build up collaboratives,” says the
EPA’s Blancato.

Adams at RTI agrees that most of the current environmental
health focus is still on preparing data for use by machine-learning
algorithms. “Facebook and other companies are successful [in]
doing this because they are working with terabytes of data,” he
says. “The rest of us doing science are still investing resources to
label data and make it available for people to use. And what we
can do with the technology [depends on] how well we integrate
the data we collect.”

Charles W. Schmidt, MS, is an award-winning journalist in Portland, Maine, whose
work has appeared in Scientific American, Nature, Science, Discover Magazine,
Undark, the Washington Post, and many other publications.
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